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s = 2~/U U~

8* = 2~/U l'J. z;

K = 2~/UI.UZ;
~

K* . = 2~(H VJ~

'xy"zy = shear stress components

« = dynamic viscosity

v = kinematic viscosity

Subscripts·

x, y, z, n, = di fferenti ati on (except on .)

INTRODUCTI ON

In a recent paper, Wang l introduces an approximati9n which reduces

the computation of three-dimensional, laminar, compressible, boundary-

layer equations to the problem of solving two-dimensional type boundary

layer equations. Assuming familiarity "'lith l~(lng's work, it is to be

noted that the test case chosen by Wang had been previously studied by

Farlllelop2 who had introduced a sma11 cross-flo'>'l perturbati on methoG.

The perturbation method itself reduced the computation of the three-

dimensional boundary layer equations to that of blo-din:ensional type

boundary layer equations. VJhile on the one hand Hang's results compare

favorably with Fannelop's, it would seem that a more stringent test of

l~ang's method vlould be the comparison with a fully three-dimensional

boundary layer calculation. In this note we provide such a comparison

\'lith the results fl~om our three-dimensional calculations. In addition

\'!e consider another aspect of ~'I()n91 s approxi mati on for the cal cul ati on

of th ree- di mens i on a1 fl Oi'lS •.
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The test case which we have chosen is incompressible, laminar

flo\'! past a fl at pl ate with attached cyl i nder (see Fi g. 1). The boundary

layer of interest is formed on the plate upstream of the cylinder. Th1S

problem has been stud1ed by Sowerby3 wich a Blasius-type series solution ~

and by [Nvyer4 "lith a fi nite di fference method. Our method di ffers from

Dwyer's in that \'/e introduce boJO stream functions such that the continui-

ty equation is satisfied.

ANALYSIS

. The governing boundary layer equations, \'Jritten in Cartesian

coordi nates are

u+v+w =0x y z

uux + vUy + \'JU z = - IIp Px -I- VUyy

U\'J + V1;1 + \'I'IJ = -lIp Pz + \)'1/
X Y z .yy

subject to boundary conditions

(1 )

(2)

(3)

y = 0: u ::: V ::: W = 0, y

where -lIp Px = UUx + l'JU z ' -l/p Pz =

and

= 00 : u = U, w = ~J

2U z(x-x)H 00 _

{1/a2)[(x-x)2+z2J2

( 4)

(5 )

(6)

for the present problem under investigation.

Introducing a Blasius-type transfomation, n =

and ~ ::: Z as well as stream functions

k
(U/2vx)2y, ~ = x

u = 1[; , v = -'1[; - ¢ w:: ¢
y X z' y (7)
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where

1jJ(X,y,z)
t::

(2vxU) 2f(~,n,r;); cp(x,y,z) ( 8)

Eqs. (2) (lnd (3) becon;e

F + (1+S/2)fF + S(1-F2) + K(l-FG) + (S*-K/2)gF
nn n n

+ 2~(f F -FF ) + 2~lul(g.F -GF) = as n s i;; n I:;

G + (1+S/2)fG - S(1-G2) + K*(l-GF) + (s*-K/2)gG
nn n. . n

+ 2F;,(f~G -FG~) + 2~tUJ(g G -GG) -, a
'" n '" i;; n I:;

(9 )

(10)

Consequently the equations for condition (b) are

with the boundary conditions at n = 0 f = F = G = g = a and at

n = ~ : F = 1, G = 1.

To integrate Eqs. (9) and (10) two initial conditions are needed, and

these are deduced by considering two limiting cases of Eqs. (9) arid (10):

(a) ~ = 0,1:; t 0; (b) ~ t 0, i;; = O. Eqs. (9) and (lO), for condition (a),

reduce to Blasius equations. Referring to Fig. (1) condition (b) is the.

Illine of symmetryll condition. Jl.long this line \'1 = 0 as \'Jell as H. In

other words w/\~ = G is indeterminate. On the other hand, \'/z and VIz are

no~ zero along z = 0 so that by applying L'Hopital's rule to w/W,

G = w /W along I:; = O.
I:; I:;

determined from Eqs. (9) and (10) by simply letting z:; go to zero.

To solve Eqs. (9). and (1O) as well as the equations resulting from

the initial conditions, an implicit finite difference procedure of

Crank-Nojcholson type is applied. The resulting non:-linear equations are

replaced initially by linear difference equations. An iteration procedure·

is used until the non-linear differe~ce equations corresponding to the

grid points employed have been solved. Calculations proceeded in the

downstream direction, for a given z-station, until flO'.v reversal appeared
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in the u-component of velocity. Step sizes used in the calculations

are: 6~ = 6s = .61, 6n = .20.

In order to check ~'lang's approximation against the full three

dimensional calculation, \'1e must sirilplify Eqs. (9) and (10) accordingly; ~

We replace derivatives in the crossflow direction, i.e., the s deri-

vatives, by their values at the edge of the inviscid flow, thereby re

ducing Eqs. (9) and (10) to quasi-u'JO dimensional equations. Therefore,

the following relations will be used:

GF
1;

= G(l/U u - l/U U F) - G{l-F) l/U U ,
1; s s

- G(l-G) -w
1 W ~ g = 0s s

GGs

(11 )

Insofar as shear stress data and flow reversal are of importance,

Tables 1 and 2 are a comparison between the full and approximate three

dimensional calculations of F (=f ) and G (=9 ~ ) at n = o. These values
n nn n nn

are proportional to the shear stress at the surface since

L xy
au i= ~_I
ay Iy~O

aw != ~-'
ay. -0; y-

(12)

Fig. (1) contains the flow reversal line as determined by both rr.-ethods.

Up to a z or s value of 6.10, the full and approximate three-dimen

sional calculations predict flov." reversal in the u-component, the approxi

mate method predi cti ng flo\'J revers a1 further downs tream from the 1eadi ng

edge than the full tllree-dinlensional calculations. At s = 7.32, the full

three-dimensional calculations predict flow reversal \'/hile the approxirr.ate

method does not. By the approximate method, F (0) (or f (0)) reaches a
n ' nn
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minimum and then increases with x ors, the minimum point shifting to

smaller s values as l; increases. The calculations of G (0) by both
n

methods, and for all l; values, even in the region \'/here the approximate"

method fails to predict flow reversal, show good agreement.

Hhile in tVJQ-dimensional, incompressible flOV!, the necessary

condition for flow reversal is an adverse pressure gradient, \'!e find

that for three-dimensional flows an adverse ~ressure gradient is not

necessarily a necessary condition for flo\'1 reversal. As a matter of

fact, for the present problem at l; = 9.05 and flm'l reversal, the

pressure gradient is favorable. As DNyer4 noted, the flow reversal of

the u-component of vel,ocity is caused by crossflo\'1 effects near the

bottom of the boundary layer. That is, flO\'I reversal is driven by the

convective term, wU z ' which is positive and overcomes the negative Px

term. Consequently \t1U is an important term, and in particular, u ,z z
insofar as fl 0\'1 reversal is concerned so that by approximating Uz in

certain rGgions of the flow field, wUz can take on values which do not

balance properly with the pressure gradient term. This is the case at

l; = 7.32 - the quasi-blo dimensional approximation breaks dO\t1ll as flm<1

reversal is apPl~oached, although for a large range of s values, the

approximate values of Fn(O) al~e in good agreement with the full three

dimensional calculations. This is also true at l; = 9.15.

At most, then, It/hat one may conclude from these results, is that

Wang1s" approximation may not be valid in some applications and, mOl~e

likely, in some particular region of a flow field, for expmple, as

di scussed above. Whel~e the method does not break dO\'Jn, agreement is

most satisfactory with the full calculations.
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To explore the possible extension of t~angls method for further

research, we considered the follovJing calculation: adopting the

approximat~ method, Eq. (11), along the line ~ = 3.05 = constant, and

using the subsequent results as initial conditions for the full three-

dimensional calculations, we find that at the next station, ~ = 3.66,

flow reversal is predicted at the same ~ value as that obtained by

-'starting the calculations along the line of symmetry, ~ = O. In other

words, the approximate method may be of interest in calculating

three-dimensional floVJS whel~e aline of symmetry is not present. The

major difficulty in such flows are the initial conditions with respect

to the crossflo.'! derivatives and their calculation. The idea is to

apply the approximate method along some initial line and then revert

t6 the full three-dimensional calculations. This idea is being applied

to othe I' problems as we11 .
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TABLE 1

cm,1PARlsorJ BETV/EDJ FULL AND APPROXIr'll,L\TE
THREE-DII~ENSIONAL BOUNDflRY LAYER CALCULATIONS OF F (0)

n

8

l; = 3.05 em. l; = 6. 10 em. s = 7.32 em. S = 9.15 em.

E;-em. Full Approx. Fuli Approx. Full- Approx. Full Approx.

0 .4696 .4696 .4696 .4696 .4696 .4696 .4696 .4696
.61 .4677 .4677 .4677 .4677 .4678 .4678 .4678 .4679

3.66 .4631 .4631 .4637 .4637 .4640 .4640 .4646 .46'16
7.93 .4508 .4508 .4528 .4529 .4539 .4540 .4558 .4560

10.37 .4408 .4408 .4442 .4444 .4461 .4464 .4493 .44%
13.42 .4230 .4231 .4296 . 4300 .4331 .4337 .4389 . .4397
17.69 .3814 .3818 .3974 .3989 .4056 .4075 .4188 .4213
20.13 .3417 .3428 .3691 .3722 .3827 .3865 .4039 .4087
23.79 .2340 .2393 .3006 .3120 .3315 .3444 .3765 .3906

.24.40 .2051 .2126 .2839 .2987 .3198 .3361 .3715 .3885
25.01 .1701 . 1811 .2646 .2843 .3067 .3275 .3661 .3869
25.62 . 1250 .1431 .2714 ~~2685 .2916 .3187 .3605 .3861
26.23 .0946 .2126 .2512 .2735 .3097 .3543 .3863
26.84 .1685 .2322 .2495 .3008 .3471 .3876
27.45 .0874 .2113 .2061 .2919 .3378 .3906
28.06 .1880 .1041 .2835 .3209 .3955
28.67 . 1617 .2759 .2547 .4028
29.28 .1310 .2694 .4130
29.89 .0926 .2646 .4269
30.50 .2623 .4452
31. 11 .2632 .4687



TABLE 2

Cor~PARISON BErt-JEUl FULL AND APPROXJt.1.L\TE
THREE-DH!lENSIONAL BOUNDARY LAYER CALCULATIONS OF G (0)

n

9

r; = 3.05 em. r; = 6.10 ern. r; = 7.32 em. r; = 9.15 em.

--
~-em. Full Approx. Full ApPl"OX. Full Approx. Full Approx.

0 .4696 .4696 .4696 .LI696 .4696 .4696 .4696 .4696
.61 .5309 .5307 .5298 .5295 .5292 .5289 .5280 .5277

3.66 .8567 .8555 .8488 .8477 .8443 .8432 .8363 .8353
7.93 1.355 1. 351 1.333 1.330 1.321 1. 318 1.300 1. 297

10.37 1.669 1.664 i.637 1.632 1. 618 1. 614 1.586 1.582
13.42 2.102 2.094 2.050 2.044 2.021 2.015 1.970 1.965
17.69 2.809 2.798 2.713 2.703 2.661 2.650 2.569 2.559
20.13 3.288 3.278 3.152 3.139 3.077 3.064 2.949 2.935
23.79 4.173 4.172 3.928 3.909 3.797 3.774 3.580 3.552

. 24. LW 4.348 4.351 4.075 4.055 3.932 3.904 3.693 3.660
25.01 4.534 4.543 4.230 4.207 4.071 4.039 3.809 3.770
25.62 4.729 4.750 4.392 4.366 4.216 4.178 3.9?.7 3. ;::-1

26.23 4.973 4.561 4.532 4.366 4.321 4.048 3. ~
..

26.84 4.723 4.707 4.520 4.469 4. 171 4. -,
27.45 4.892 4.891 4.647 4.621 4.296 4. ~

28.06 5.086 4.754 4.777 4.408 4.::· _
28.67 5.293 4.938 4.411 4.4~&

29.28 5.513 5.102 4.545
29.89 5.747 5.270 4.648
30.50 5.441 4.746
31. 11 5.613 4.837
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Flow geometry and the pl~edietion of flow reversal: --- quasi

two-dimensional (approximate); __ fully three-dimensional.


